Dealing With Sensitive Cavities


Tin has been recommended for temporary fillings in sensitive cavities,

because it is soft and easily packed in contact with the walls, has

therapeutic value, and after a time, when the temporary filling is

removed, the cavity is not as sensitive as formerly.



It has been observed that starting gold in a sensitive cavity causes

pain, but starting tin in the same place seldom does.



As long as t
n preserves its integrity it preserves the tooth, therefore

tin fillings should not be repaired with amalgam, as their integrity may

be destroyed. Cavities can be partly filled with tin and completed with

sponge, fibrous, or crystalloid gold, after the manner described for

beginning with tin and finishing with gold foil.



"I advocated tin at the cervical wall, cervico-lingual and

cervico-buccal angles to the thickness of 24 plate. Then complete the

filling with gold. Some of my most successful efforts in saving soft

teeth have been made in this way. This method has great value over gold

for the whole filling, but there are two objections to it: First, it

imparts to the cervical border the color and appearance of decay, so

that in three cases where an instrument passed readily into the tin I

have removed the fillings, without any necessity for it, not even

finding any softening of the margins. Second, its use requires the same

conditions of dryness, shape of cavity, delicate manipulation,

inconvenience to patient, and strain upon the operator as when gold is

used alone." (Dr. D. D. Smith, Dental Cosmos, 1883.) He admits that

this method saves soft teeth and also cervical margins. Do not those

two very important factors more than counterbalance the color, and

oversight of the dentist?



Dryness is an essential in making the best filling with any material,

and the time and strain consumed by the majority of operators in filling

with tin is not more than one-half what it is in using gold.



"I use tin at the cervical margin of all proximal cavities in bicuspids

and molars. I prepare a matrix of orange-wood to suit each case, letting

it cover about one-third of the cavity, then fill with tin condensed by

hand force and automatic mallet; now split the matrix and carefully

remove it piece by piece, so as not to disturb the tin; then trim and

finish this part of the filling. Make another wooden matrix, which

covers the tin and remainder of the cavity, and fit it snugly to place.

Use a coarsely serrated plugger and begin packing non-cohesive gold

into the tin, letting it fill about one-third more of the cavity; then

complete the last third (surface) with cohesive gold. I have tested this

method for twenty years, and it has given me splendid results. I always

tell patients that there will appear sooner or later a slight

discoloration near the gum, which must not be mistaken for caries." (Dr.

A. P. Burkhart.)



Another use for tin in the operating-room is found in Screven's

"Gutta-percha-coated Tin Foil," a cohesive, antiseptic non-conductor, of

which the inventor says: "Cement fillings that have been kept dry for

ten hours after mixing will be much harder than those soon exposed to

moisture, and they will retain that hardness though exposed to moisture

afterward. This preparation will keep a filling perfectly dry in the

mouth, and when removed the filling will be found hard as stone. There

is nothing better for lining cavities, holding nerve-caps in position,

holding a preparation in place when devitalizing a pulp where the tooth

is so much broken away as to make it difficult to prevent a filling

showing through the enamel, and for many other purposes."



High-heat gutta-percha has been used as a base in deep occlusal, buccal,

and approximal cavities, completing the fillings with tin. Occlusal

cavities may be filled with tin; then after the filling is condensed and

finished, drill out the center and fill with cohesive gold, not cutting

away the tin so as to expose the margin; such fillings wear well, as

much of the attritial force comes on the gold portion of the filling.



With the exception of the part in brackets, the following article is

from the British Journal, May, 1887:



"If a person eats an oyster stew at 130 deg. F., a gold filling would carry

the difference between the temperature of the stew and that of the

mouth, 130 - 98 = 32 deg., almost undiminished to the bottom of the cavity;

allowing 2 deg. of diminution, then the cavity around the gold filling has

assumed 128 deg.; now the person feels warm and drinks ice-water at 32 deg..

Taking into consideration the specific heat of the gold filling, it will

assume about 40 deg., which it carries with a diminution of the cold of

about 4 deg.,--that is, as if it was 44 deg.,--into the interior of the cavity;

then the cavity will assume 44 deg., the difference within one-tenth of a

minute being 128 - 44 = 84 deg., a change which would produce a violent

inflammation in any organ which was not accustomed to it. This

derangement in the tooth means interruption of circulation, and young

teeth will be most affected.



"Thermal effect depends on heat-conducting power [gold is nearly four

times as good a conductor of heat as tin] and also on specific heat, so

the more the latter approaches that of the tooth the less it is liable

to produce sudden changes [thus favoring tin]. Specific heat manifests

itself by the speed of changes, while the heat-conducting power

influences the intensity [then the intensity of heat in a gold filling

would be three or four times as much as in a tin filling]. In speed gold

produces this change in one-tenth of a minute" [tin in one-fifth,--that

is, gold absorbs heat and expands about twice as fast as tin].



In 1838 Dr. J. D. White introduced sharp-wedge-shaped instruments for

filling teeth, and he claims to have been the first to use them; they

pack laterally as well as downward, and present as small a surface to

the filling as possible, so that the greatest effect may be produced

upon a given surface with a given power. Rolls of either tin or gold are

made by cutting any desirable portion from a sheet of No. 4 foil; cut

this portion once transversely, place on a napkin or piece of chamois,

then with a spatula fold a very narrow portion of the edge once upon

itself; then with the spatula resting on the thickened edge draw the

spatula away from it with gentle pressure, and the foil will follow in a

roll.






The old method of using rolls, ropes, and tapes or strips is the same,

but we will describe one method of using tapes. (See Fig. 9.) A strip

is a single thickness of foil in ribbon form; a strip folded lengthwise

once, twice, or more forms a tape of two, four, or more thicknesses of

foil. The tin foil should be cut into strips and folded into tapes

proportioned in width and thickness to the size of the cavity. One end

of the tape is carried to the bottom of the cavity and then forced

against the side opposite the point where we intend to finish; now

remove the wedge-shaped plugger and catch the tape outside of the

cavity, and fold another portion against that already introduced,

letting all the folds extend from the bottom to a little beyond the

margin. Proceed in this manner, with care and sufficient force, until

the cavity is full, using for the last folds a small instrument.

Condense the surface with a large plugger, then go over it carefully

with a small instrument, and if any part yields, force in a wedge-shaped

plugger and fill the opening in above-described manner; condense,

burnish, and trim alternately until the surface is level with the

cavity-margin. By extending the folds from the orifice to the base of

the cavity, the liability of the tin to crumble or come out is

effectually prevented, and by putting it in with a wedge-shaped plugger

it is pressed out into all depressions of the walls.



A later method of filling with tape or rope is to use wedge-shaped

pluggers with sharp serrations, filling the ends of the cavity, and as

the two parts approach each other that next to the wall should be in

advance of the rest, thus an opening will be left in the center which

can be filled with a smaller tape or rope.



Another old method: Take a piece of foil and roll it into a hard ball;

then gradually work it into the cavity, being careful to have

sufficient around the margin.



Still another suggested method: Roll a piece of foil into a loose ball,

place it in the cavity, and pass a wedge-shaped plugger into its center.

This has the effect of spreading the tin toward the walls of the cavity,

the opening to be filled with folds in a way already described. The

wedge is used as often as it can be made to enter, filling each opening

with folds; then condense the surface, trim, and burnish.






The English give the Americans the credit of first using cylinders.

Anyhow, Dr. Clark, of New Orleans, in 1855, used them made from

non-cohesive gold, and also from gold and tin in alternate layers. (See

Fig. 10.)



Cylinders were used which were a little longer than the depth of the

cavity, introduced with wedge-shaped pluggers around the walls, each one

being closely adapted to the margin; then another row was added, which

was forced firmly against the preceding, continuing this process until

the cavity was full. The wedge, having a smooth end and sides, is forced

into the center so as to drive the tin toward the sides of the cavity,

being careful not to split the tooth; the opening is then filled with a

cylinder. Now force a smaller-sized wedge into the center of the last

cylinder, and into the opening introduce another cylinder, proceeding in

this manner until the filling is solid. Then condense the ends of the

cylinders, trim, and burnish. For the same operation more recent

pluggers are wedge-shaped, with sharp, deep serrations. In these cases

the filling is retained by the general form of the cavity and wedging

within a certain limit, and not by cohesion of the different parts. For

a time tin cylinders were prepared and put on sale at the dental depots.



As far as we are aware, the first tin foil made use of in operative

technics was by Dr. F. S. Whitslar, who removed a disk of German silver

from an ivory knife-handle in 1845, then used hand pressure to fill the

cavity with tin. In the college course of operative technics tin foil

can be used, almost to the exclusion of gold foil, to demonstrate the

manipulation of both cohesive and non-cohesive gold. Shavings scraped

from a bar of tin are also useful in operative technics; they are more

cohesive than foil.



More

;